ASYMPTOTIC ANALYSIS OF RICCI FLOW ON R"*!
WITH TYPE-IIB SINGULARITIES

HAOTIAN WU

ABSTRACT. In this paper, we study the precise asymptotics of Type-I1Ib
solutions to Ricci flow on R™™!. In each dimension n + 1 > 3 and for
each real number A\ > 0, we construct complete rotationally symmet-
ric solutions to Ricci flow on R"*! that form in infinite time Type-IIb
singularities with the curvature blow-up rate t*~!. Near the origin, the
blow-ups of such a solution converge uniformly to the Bryant soliton;
near spatial infinity, the solution is asymptotically flat at a precise rate
depending on A.

1. INTRODUCTION

A one-parameter family of (n+1)-dimensional complete smooth Riemann-
ian manifolds (M, g(t))+,<t<t, is said to evolve by Hamilton’s Ricci flow [21],
starting from an initial metric go, if g(t) satisfies the equation

(1.1) Org = —2Ric(g), 9(to) = go,

where Ric(g) is the Ricci curvature of the metric.
Let (M, g(t)) be a solution to Ricci flow that exists up to a maximal time
T < oo. If T < 0o, then we say the Ricci flow has a finite-time singularity
of
e Type-lif sup (7 —t)|Rm(:,t)| < oo,
M x [to,T)
e Type-Ilaif sup (7T —t)|Rm(-,t)| = occ.
M x[to,T)
If T = oo, then the infinite-time singularity of this immortal Ricci flow is
said to be
e Type-IITif sup ¢/ Rm(-t)| < oo,
M X [to,00)
o Type-IIbif sup ¢ Rm(:,t)| = oc.
M x[tg,00)
If a Ricci flow solution encounters a Type-IIb (or Type-III) singularity, then
we also call it a Type-IIb (or Type-III) solution to Ricci flow. Analogous clas-
sifications hold for solutions to mean curvature flow (MCF) with |h(-,t)|?,
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the second fundamental form of a hypersurface moving by MCF, replacing
| Rm(+,t)| in the above definitions.

Naturally, we have the following questions (cf. [13, Problem 8.6]): What
can be said about the specific blow-up rates of Ricci flow solutions with a
Type-ITa or Type-IIb singularity? What about the asymptotic properties of
Ricci flow solutions of each type near the singular time 777

In real dimension two, by the work of Hamilton [22] and Chow [11], Ricci
flow on S? always encounters a Type-I singularity modelled by the round
sphere. On the other hand, Daskalopoulos and Hamilton |16] have showed
that Ricci flow on R? starting from a metric of finite area forms a Type-Ila
singularity at the rate (T' — ¢)~2. The precise description of the extinction
profile of such a solution were later given in |15] and [17]: the solution is
modelled by a cigar soliton in an inner region, and has a logarithmic cusp
in an outer region.

In real dimension three, Hamilton’s seminal work [21] says that Ricci
flow of a closed three-manifold with positive Ricci curvature forms a Type-1
singularity and shrinks to a round point. This result was later generalised
to higher dimensions under other curvature assumptions, e.g., the 2-positive
curvature operator by Bohm and Wilking [5]. These Type-I singularities are
global in the sense that the volume of the manifold at the singular time T'
is zero. In comparison, there exist local singularities that form on compact
subsets of a manifold and the volume of the manifold remains positive at the
singular time 7. For example, Type-I nondegenerate neckpinches modelled
by the round cylinder have been rigorously constructed on S"*! (n > 2) by
Angenent and Knopf [1].

In real dimensions n+1 > 3, Type-Ila singularity was first proved to exist
in Ricci flow on S™*! by Gu and Zhu [20]. Concerning the geometric details
of such a solution, Garfinkle and Isenberg [19] gave numerical evidence that
a degenerate neckpinch in Ricci flow on S is a Type-Ila singularity modelled
by the rotationally symmetric Bryant soliton, which was first constructed by
Bryant [§] and has been proven by Brendle to be the unique complete non-
flat steady gradient Ricci soliton in dimension three under a non-collapsing
assumption [6]; see also Brendle’s generalisation to higher dimensions [7].
In [3], Angenent, Isenberg and Knopf have constructed on S"*! Ricci flow
with Type-Ila singularities modelled on the Bryant soliton with curvature
blow-up rate (T — t)~2*2/F for each integer k > 3. In contrast, Type-IIa
singularities to Ricci flow on R™"! (n > 2) with curvature blow-up rates
(T — )=+ for any real number A > 1 have been constructed by the
author in [32]. There are also corresponding results on Type-IIa singularities
in MCF by the author and his collaborators [23,24].

There are several recent results on Ricci flow with Type-Ila singularities.
Appleton [4] has showed that Ricci flow on a noncompact four-manifold
can develop Type-Ila singularities modelled on the Eguchi-Hanson space.
Di Giovanni [18] has proved that asymptotically cylindrical Ricci flow on
R"™*! without minimal sphere forms a Type-IIa singularity modelled on the
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Bryant soliton after suitable dilations. Stolarski [30] has constructed on
certain product manifolds Ricci flows that form Type-Ila singularities with
curvature blow-up rates given by arbitrarily large powers of (T —t)~! . If
we specialise the Ricci flow to Kahler manifolds, then Li, Tian and Zhu have
given the first examples of Type-Ila singularities on Fano manifolds [27].

Concerning the Type-IIb singularities in Ricci flow, the simplest example
on compact manifolds is a non-flat Ricci-flat Kahler metric on a K3 surface,
whose existence follows from Yau'’s resolution [33] of the Calabi Conjecture;
note that this solution is static under Ricci flow. Further results on Kahler-
Ricci flows with Type-IIb singularities have been obtained by Tosatti and
Zhang [31]. It has been conjectured [12, Conjecture A.38] that Ricci flow on
a closed 3-manifolds never forms a Type-IIb singularity .

In general, any steady Ricci soliton is a Type-IIb solution to Ricci flow.
Examples of steady Ricci solitons include the cigar soliton on R? and the
Bryant soliton on R™ for n > 3. Both the cigar soliton and the Bryant soliton
are rotationally symmetric. Many non-rotationally symmetric steady Ricci
solitons have been found recently. Notably, Lai [26] has constructed Zs x
O(n)-symmetric, non-rotationally symmetric, steady gradient Ricci solitons
on R™1! for n > 2. Taking the product of a steady Ricci soliton with R*
(k > 1) produces (somewhat trivially) a Type-IIb solution to Ricci flow.
Additional example of Type-IIb solution is found in [9], where Cabezas-
Rivas and Wilking constructed an immortal 3-dimensional non-negatively
curved complete Ricci flow with unbounded curvature for all time.

In this paper, we are interested in constructing non-Kahler, non-soliton
solutions to Ricci flow with Type-IIb singularities on a complete noncompact
manifold and analysing their precise asymptotics as t * co.

Throughout this paper, we use C, (k € N) to denote a positive constant
that depends at most on n or A, and may change from line to line. The
expression “f < ¢” means f < Cpg for some constant Cy; “A ~ B”if and
only if A < B and B < A.

Our main result is the following.

Theorem 1.1. In each dimension n+ 1 > 3, for each real number A > 0,
there exists an open set (in C? topology) G of complete rotationally symmet-
ric metrics, none of which is the Bryant soliton, on R™1 such that Ricci
flow starting at each go € G has a unique solution g(t) fort € [tg,00). The
solution g(t) has the following asymptotic properties ast /* co.

(1) The singularity is Type-IIb with

sup [Rm(-, )| ~ ¢!
Rn+1
attained at the origin of R*T1.
(2) If we rescale the solution so that the distance from the origin rescales

at the rate t—(1=N/2 then the metric converges uniformly on inter-
vals of order t1=2/2 to the Bryant soliton.
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(3) Near spatial infinity, the metric is asymptotically flat, i.e., | Rm(-,t)| —
0, for all t > 0, with the precise asymptotics at spatial infinity de-
scribed in Section [3.4).

In particular, the solution exhibits the asymptotic behaviour of the formal
solution described in Section [3.

Theoremconstructs Type-IIb solutions to Ricci flow on R™*! for n > 2
that are not soliton or Kéhler. These solutions (and also the Bryant soliton)
show that the exponent (A — 1) of the Type-IIb blow-up rate t*~! belongs
to a continuum (—1,00). The curvature blow-up rates of previous examples
of Type-IIb solutions are restricted, e.g. A = 1 for steady Ricci solitons.
We note that a continuum of curvature blow-up rates has been observed
for Type-Ila singularities in Ricci flows on R™*! [32]. As t oo, the Ricci
flow solutions constructed in Theorem converge uniformly to a non-
Euclidean flat metric (cf. Remark if A € (0,1) and otherwise if A > 1.
As previously mentioned, the Bryant soliton is a Type-IIb solution whose
curvature blow-up rate is t*1 with A = 1. So we may ask whether or not
the Bryant soliton appears as a “phase change” among Type-IIb solutions
to Ricci flow when the parameter A\ varies across the “critical value” A = 1.
Lastly, one may compare Theorem for Ricci flow with the construction
of Type-IIb solutions to MCF in [25].

The proof of Theorem uses matched asymptotic analysis and barrier
arguments for nonlinear PDE. The same strategy has been implemented for
Ricci flow or mean curvature flow with Type-Ila singularities in [23}[24}32],
and Type-IIb MCF solutions in [25]. In Section |2, we recall the set-up
for rotationally symmetric Ricci flow on R™*! and collect some basic facts.
In Section (3] we derive approximate (formal) solutions using the method
of formal matched asymptotics. In Section [4] we use these approximate
solutions to construct the corresponding supersolutions and subsolutions
to the rescaled PDE. The supersolutions and subsolutions are ordered and
patched together in Section [5| to create barriers to the rescaled PDE; a
comparison principle for the subsolutions and supersolutions is also proved
there. In Section [6] we complete the proof of Theorem [I.1

Acknowledgements. We thank the anonymous referees for many valuable
comments. This work is partially supported by the ARC grant DE180101348.

2. PRELIMINARIES

Let O denote the origin of R*! (n > 2). We identify R"*! \ O with
(0,00) x S™ and equip it with the time-dependent warped product metric

g = (,02(1', t)de + ¢2(33, t)gspha

where z € (0,00) and gspn is the metric of constant sectional curvature one
on S".
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We recall some basic facts about such a metric, cf. [3, Section 2]. The
distance s to the origin is

X
s(z,t) == / o(y, t)dy.
0
In the s-coordinate, the metric becomes

(21) g = d32 + d}z (Sa t) Gsph-

If we extend the metric g to a complete smooth metric, still denoted by g,
on R™1 then 1 necessarily satisfy the boundary conditions

limy =0 and limys=1.

x\Ow z\,0 Vs

In this paper, we use the notation ;| for taking the time derivative while
keeping the quantity “” fixed. Then

Vss
(&

In the s-coordinate, the Ricci flow system (1.1]) is reduced to the following
parabolic PDE for 1,

[0l > 05] = —n

Os.

1— 2
—5

The function ¢, which is suppressed in the s-coordinate, evolves under Ricci
flow by

(2.2) Ol =1ss — (n—1)

Vss
G
Let K denote the sectional curvature of a two-plane with one radial and

one spherical direction and L the sectional curvature of a two-plane tangen-
tial to the sphere {z} x S™. Then

¢ss I — 1- 1/}3
[ P2
In particular, |Rm|? = 2nK? + n(n — 1)L2.
Since the metric g is smooth and li{‘% s = 1, we must have s > 0 in a
X

Ol logp=n

(2.3) K=-

neighbourhood of the origin O. So we can use ¥ as a new coordinate near
the origin to write

(24) g= Z(¢, t)_lddﬂ + d)Qgsph7
where z (1,t) := 12. Then the sectional curvatures are rewritten as
Zap 1—2z
2.5 K=-=r -~
29 20" v

Under Ricci flow, the metric (2.4]) evolves by (see |3, Section 2.2])
(2.6) Ay 2 = Eylz],
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where & is the purely local quasilinear operator

1 1-
Eplz] == 2zyy — izi +(n—1- z)% +2(n — 1)(w2z)z
The boundary conditions we impose for equation [2.6| are
limz=1, lim z=0.
YN0 ¥,
We can split €, into a linear part and a quadratic part:
Eylz] = Ly 2] + Qy[2,
where
Zap z
2.7 Lylzl =(n—1 +2>,
(2.7 olili= (-1 (2 42
) 1 5 zzy 22
(2.8) Q2] == 22y — 5%~ o (n— 1)E
The quadratic part defines a symmetric bilinear operator
A 1
(2.9) a1, 2] 1= 5 2122y + 22(21)py — (21)y(22)y]
21(22)1/, + 2’2(21)111 2129
2.1 — —2(n—1)—%-.

In particular, Qy[z] = Qy |z, z|.

3. FORMAL SOLUTIONS

The basic idea behind the construction of the formal solutions, (i.e. ap-
proximate solutions) is to analyse the evolution equation under various
rescalings of ¢ and find approximate solutions to the rescaled PDEs. The
formal solutions serve as the approximate models which the solutions we
discuss here asymptotically approach.

We introduce the following rescaled variables

7 :=logt,
S
VT
__ v
2(n — 1)t

Since we are interested in the asymptotic behaviour of the solution when
t /oo, we can assume tg > 1, and so 79 = logtg > 0.

In the (u,7)-coordinates, equation becomes the following evolution
equation for z(u, 7).

1

1
mgu[fé'] =+ —UZy,

(3.1) Orl, 2= 5
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where 7 € [logtg, 00), u € (0,00) and z € (0, 1], and the boundary conditions
for (3.1) are li{‘% z=1and lim z = 0. In particular, z € (0, 1] under Ricci
u

u /100
flow, which is proved in Lemma We seek solutions of equation ([3.1)
subject to the boundary condition z(0,7) = 1 and the asymptotic condition

lifm z(u,7) = 0 for all 7 > 79. In particular, the asymptotic condition that
u /o0
z N\, 0 as u oo is compatible with the consideration of asymptotically flat

Riemannian manifolds whose metrics ds® + 1(s)?gspn are defined by (s)
with sublinear growth in s, cf. Section

3.1. Formal solution in the exterior region. The exterior region is ex-
pected to be a time-dependent subset in which u € (0,00) and z € (0,1).

Motivated by the asymptotic condition lifm z(u,7) = 0 for all 7 > 79, we
u /o0

adopt the following ansatz
o0
z= Z e 7 (1),
m=1

where A > 0 is a parameter to be specified.

Remark 3.1. This ansatz has been used in constructing Ricci flow solutions
with Type-Ila singularities in both the compact setting [3] and the non-
compact setting [32].

We substitute this ansatz into equation ({3.1)) and split €,[z] into the linear
and quadratic parts as given in and ([2.8)), respectively. By comparing
the coefficients of e™™" in the resulting equation, we see each Z,, must
satisfy the ODE

m—1
Qu [Zu Zm—z] .
i=1

(u™! +u) Cilz—um + (u 2+ mN\) Zy = —

1

1
(82) 3 2(n — 1)

When m = 1, Z; satisfies the linear homogeneous equation

(3.3) O e e
whose general solution is
(3.4) Zy(u)=cu?(1+ u2)17)\
for an arbitrary constant ¢ # 0.
When m = 2, equation becomes
(3.5) % (u™! +u) % +(u+2N) 2y = _2(n1—1)9" (Z4],

where

Q,[Z1] = 2% (1 + u2)_2/\

(4—n(1+u®)? +u*(1+A)? +20*(3+ V).
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The general solution of equation (3.5)) is

w2 (1+u2) ™
Zofu) = ) g,
where
(3.6)  f(u):=C1—2c ( " + T2 2¢*(A—1) log T

for some arbitrary constant C'.
Let us now analyse the asymptotics of e 7 Z; (u) + e Z(u) as u \, 0

and u oo, respectively. It is straightforward to see that

—2\T — AT

e Za(u) e 9y —A

= 1

e MZi(u)  cln—1) (14w (),

where f(u) as defined in (3.6]) has the following asymptotics
Au? 4+ 0 (Plog(u?)), u\0,
fu) ~

C1 + u~2, u  0o.

Therefore, we obtain
=27 7, (1) ce™ (u?+ 0 (logu)), u\0,
eMZi(u) | e Ay (C’l + C2U_2) , u too.

Consequently, we always have

672)\7'Z2(u)
3.7 li ———| =0
(37) wroo | e 7y (1)
for all 7 > 7. On the other hand, if u = e *™/2R for some fixed R > 0, then
672)\722 (u)

(3.8) Sece (R_2 +e 0 (log R + 7')) ,

e 71 (u)
which is small for all sufficiently large 7 if for a given ¢ we choose R to be
large.

Let us label the region where ue*™/?2 = O(1) as the interior region. The
complement of the interior region is labelled as the exterior region. The
estimates (3.7) and (3.8)) allow us to use the dominant term e=*7Z;(u) as a
formal solution (i.e., an approximate solution) in the exterior region, so we
define

_ 1-x _
Zform, ext — CU 2 (1 + Uz) e AT
3.2. Formal solution in the interior region. In the interior region where

ue*/? = O(1), we introduce a new variable
ro=ue /2.

Then in the (r, 7)-coordinates, since

A
87"1“2 = 87'|uz - §uzu = BT’uZ - 57'27«,
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Eulz] = 7€, [2],
equation (3.1)) for z(u, 7) becomes the following evolution equation for z(r, 7):

A—1 1
—AT N - - —
(3.9) e {3”« it rzr} =1 Er[z] = 0.

Suppose, for the sake of the formal argument, that the term involving e=*"

is negligible for sufficiently large 7, then this equation is approximated by
the equation

Er [2] =0,

whose solution, subject to the boundary Z(0) = 1 and the asymptotic con-

dition li/‘m Z(r) = 0, is a Bryant soliton profile function
T /00

Z(r) =B (Ar),

where A > 0 is a constant whose value will be determined later. The com-
plete smooth metric given by

g = B! (Ar) dr? + 7°2gsph

is a scaled version of the Bryant soliton [§].
The function B(r) is smooth and strictly monotonically decreasing for all
r > 0 with the following asymptotics

1—b27‘2+b37‘4+b47“6+"‘, r N0,
(3.10) B(r) = L 4 6
ar~“4+cr t+cer P+, r oo,
where b’s and ¢;’s are constants; in particular, bo > 0, and bg = niﬁb%

[2, Appendix BJ. In this paper, we normalize B(r) by setting ¢; = 1. In the
interior region, our formal solution is

Zform, int = B (AT) .

Remark 3.2. If A = 1, then r = ue™? = ¢/\/2(n —1). In this case, the

Bryant soliton B (Ar) = B (Al/) /\/2(n — 1)) solves equation ([2.6) and gives
a trivial example of Ricci flow with Type-IIb singularity with the highest
curvature blowing up at the rate O (t*~1) = O (A°) = O(1). Our focus in
Theorem [1.1] is to construct different solutions for A # 1.

3.3. Matching condition. We now match the formal solutions at the in-
terface of the interior region and the exterior region. If we pick r = R > 1,
then in the interior region, using the asymptotics of 2form, int as 7/ 00, we
have

(3.11) Ztorm, int = B (AR) ~ A™2R™%,
in the exterior region, using the asymptotics of zform, ext as u ~\, 0 and that

u = Re */2_ we have

(3.12) Ztorm, ext = cu2 (1 +u2) e x cR72
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Equating (3.11)) and (3.12f), we obtain the matching condition for the formal
solution

(3.13) A2 =c

The condition [3.13] says that given A and R > 0, we can always find such ¢;
equivalently, fixing ¢ and R, then A is determined.

3.4. Features of the formal solution. Our formal solutions defined in the
interior region and the exterior region are valid for all dimensions n+1 > 3
and give rise to Riemannian metrics on R™*! as defined in . In fact,
these Riemannian metrics are complete, as will be proven in Lemma [6.1
Since Zform, ext = e*)‘Tcu*Q(l + u2)17A, we have at any 7 < 0o, as u " 00,

ie., ¥ =+/2(n — 1)ue™/? / oo, that

(3.14) z = wz ~e Mo ~ c¢72)‘,
__ Ru 7 2\ —(14+2) —2(14)
(3.15) R ) v )
11—z 1—2

_ -1 _
?:767—’\“(tu2) N¢2.
Remark 3.3. Conditions (3.15)) and imply that the metrics given by
the barriers (cf. Section [5)), and hence the Ricci flow solutions described in
Theorem (cf. Section [6)), are in fact asymptotically flat in the sense that
| Rm | — 0 as one approaches spatial infinity. Recall that an asymptotically
conical metric on R"*! is given by ds? + a2s2gsph, where o € (0,1] with
the case o = 1 being the Euclidean metric. For an asymptotically conical
metric, 2 = ¥? = o® > 0. As will be shown in Section @, the solutions
in Theorem do not satisfy z = 1 and therefore are non-Euclidean, the

solutions are not asymptotically conical either since h/m z = 0. Condition
S oo

(3.14) implies that the metric ds? + wQQSph we construct in this paper are
not asymptotically Euclidean in the sense considered in [14] or [28§].

(3.16) L=

As we move towards the origin O, z(u) , 1 and we enter the interior
region where the formal solution zform, int is @ Bryant soliton profile function.
At O, we have K (0,t) = L(O,t) for all t > to, and the norm of the curvature
tensor achieves its maximum value

vnn+1) . 1—z o_ -
_ 1L — 1 A=D1 _ 42-1
|Rm (O, )] n(n+ 1)L(0O,t) 3n —1) TI{‘T%) 3e "0,

where C' is a positive constant depending on n, A, bs; to be precise, C =

v/n(n+1)A%by
2(n—1)

0. In particular, the curvature of a Ricci flow solution that asymptotically

approaches this formal solution necessarily blows up at the same rate.

. Therefore, the formal solution has a Type-IIb singularity if A >
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4. SUBSOLUTIONS AND SUPERSOLUTIONS

Given a parabolic differential operator P[v] = 0,v — D[v] where D[] is
some second-order elliptic operator, a function v* is a subsolution of the
PDE P[v] = 0 if P[vT] < 0 whereas a function v~ is a supersolution if
P [v~] > 0. If there exist subsolution v~ and supersolution v+ and in addi-
tion, v~ < v™, then we call v~ a lower barrier and vt an upper barrier.

Suppose the equation P[v] = 0 admits a solution, then the existence of
barriers v~ < v+ implies that there exists a solution v with v~ < v < v™.
This is the general idea of our argument which will be justified rigorously
in this section and next. In this section, we construct subsolutions and
supersolutions for equation in the interior and the exterior regions. In
the next section, we patch them to obtain global upper and lower barriers.

4.1. Interior region. Recall equation (3.9) for z(r, 7). Let us define
A—1 1
(41) TT[Z] = 67)\7 {8T|7‘ Z+ QTZT} - mgr[Z]

so then z(r,7) satisfies the equation T,[z] = 0 in the interior region. The
subsolution and supersolution for this equation in the interior region are
given in the next lemma.

Lemma 4.1. For an integer n > 2, a real number A > 0, a constant A > 0
and arbitrary constants a™, there exist a sufficiently large 11 < 00, a constant
By > 0 depending only on A, and bounded functions B~ (r,7) : (0,00) x
[T1,00) — R depending on A and a™ such that the functions

(4.2) 2 (r,7) =B <A (1 + aie_AT/2) 7‘) + e BE(r, 7)

nt
are supersolution (+) and subsolution (—), respectively, of T,[z] = 0 in the
region Qi 1= {O <r< Ble)‘T/z} for all T > .
Proof. Let us denote BX(r,7) := B (4 (1 + aie_/\T/Q) r). Then

—MaTeAT/2
2(1 + ate A1/2)

In order for 2t = BT (r,7) +e BT (r,7) to be a supersolution, we need
to show T, [zl';t] > 0. Below, for notational clarity, we drop the superscript
“+77 .

Since B(r, 7) solves &,[z] = 0, we obtain

L, 9,[B, P
Tr [z+] =N {— [6]2(—;2_ 1[) bl + 5 17"B7"}

0-|, BT =By

—Aa
2(1 + ae=7/2)

—2\T A-1 QT[B]
+e {—)\/B—F@T\Tﬁ—i- 5 T’BT_2(n—1)}'

+ e 3M/2B,
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Set A := 1+ % = % > 0, we define B(r,7) to be a solution of the
equation

(4.3) L8] +29,[B, 8] = 2(n — 1) ArB,..
Using the definitions of £, in (2.7) and QT in (2.8]) respectively, equation

(4.3) becomes
(4.4)

Bf,, {

Using the asymptotic expansions of B(r,7) near r = 0 and r = oo given in
(3.10)), we have the following. Near r = 0, equation (4.4)) is approximated
by

B B, 1-2B X
_Br_r}6r+{BTT_T+2(n_1) TQ }BZQ(n_l)ATBT

n—1

Brr + 2 ; 25r - 2(nr2_ 1)5 = —Cir? (1 + 0 (ae_”ﬂ)) :

where C1 = 2(n—1)(y+1)byA2. Near r = oo, equation (4.4) is a perturbation
of the following equation

1+ O (ae=*7/?) n—1 2(n — 1) 4(n—1)A e/
(AT)Q rr + - /87‘“' 7"2 /8:_ (A?")2 (1+O(CL6 A 2))

So there exists a solution 5 to equation with the following asymptotics
r2+0(r4 (1 —|—aef)‘7/2)) , r N\ 0,
(—2A/A2 + 0(1)) (1+0 (ae_)‘T/2)) , 1/ oo.
Also, the asymptotic expansions
LN
" (Csr_2 +0 (r‘2)) (1 + 0 (ae_)‘T/z)) , r 0o,

(4.5) B(r,7) =

imply that
—rB, > Cymin {1"2, r_2} .
Then in view of (4.5)), we have for 0 < r <1,

A—-1 Qr[ﬁ]
PR T

A3+ 0, B+ ‘s Cror?,

and hence

(J‘r [Z+ :| > _e—)\TTBT o 6—3)\T/207,r,2 _ 6—2)\7'0107,,2

> 6_)\7—7’2 (Cg o e—/\7'/2cr7 o e—)\'rClO)

>0
for all 7 > 7 with 7 sufficiently large. And for » > 1 and 7 > 7,
A—1 QrLB]
—A T r S y
‘ 5+8‘Tﬁ+ 5 rs 2(n_1) C11
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so then
T, [#h,] > —e B, — e IT/20u 2 _ om0
N (CQT—Q e 202 e‘ATOH)
>0

provided that r < Bye*/? with constant By := /Cy/(2C11).

Therefore, z& is indeed a supersolution. That z_ , is a subsolution is
proved similarly. So the lemma follows. (]

Remark 4.2. See the proof of Lemmald.1], the asymptotics of B(r) and 3(r, 7)
as r \, 0 imply that li{‘% zij;t(r, 7)=1forall 7 > 7.

4.2. Exterior region. Recall equation (3.1) for z(u, 7). We define

(46) ?U[z] = 8T|uz - Q(nl—l)gu[z] — %uzu,
(4.7) = GT\UZ—%(u‘1+u) —u - 2(%%

where we used &, [z] = Ly[z] + Qulz], and (2.§). In this region, 2(u,7)
satisfies the equation F,[z] = 0. The next lemma takes care of the subsolu-
tion and supersolution for this equation in the exterior region.

From now on, we define Z(u) := u2 (1 + u2)17)‘. We note that Z(u) >0
for all u € (0, 00).

Lemma 4.3. For an integer n > 2, a real number A > 0 and constants
ct > 0, there exist function ¢ : (0,00) — R, constants 32i > 0, a sufficiently
large 79 < oo, and constants bf depending only on c¢*, respectively, such
that for any b > bf > 0, the functions

(4.8) 2E (u, 1) = cFe N Z(u) £ be P (u)

ext

are supersolution (+) and subsolution (—), respectively, of F,[z] = 0 in the

region (955 {B;ﬂ / %e‘”ﬂ <u< oo} and for all T > 15.

ext * =
Proof. We first prove the lemma for 2.
superscript “+” in the argument below.
Since Z(u) is a solution of the ODE (3.3)), we have

To simplify notation, we omit the

62)\7'9-"u [z;;t] =b {—; (u_l =+ ’U,) C’ _ (u_2 + QA) C} — 2(;2_1)QU[Z]
be —ATA b2 —2)\T
- Ee Qu[Z7 C] - me Qu[d'
Since
Q, 2] = 2u~% (1 +u®) " f(u),
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where

fu) =4 —n(14+u?)? +u(1+ N2 +26%(3 + N),
we have for u € (0, 00),
(4.9) F)] < C1(1+u?)?

for some constant C depending only on n and .
Let ¢ : (0,00) — R be a solution of the ODE

4.10 e S ) =t (142
(4.10) X
Then we solve this ODE to obtain
C(u) :=u? (1+ u2) 1+ C’gu2)
for an arbitrary constant C5. Let us choose Cy = 1, so
(4.11) C(u) == u (1 +u2)* 2,
In particular, {(u) > 0 for all u € (0, 00).
From (4.11)), the asymptotics of { are
W w40 (u?), u ™\, 0,
u =
Cou** +0 (u_2_4)‘) , u oo.

So the following estimates hold. For Bye /2 <y < 1,

2—2X

1-2X
(

0,17,¢]| < Csu™®, 194 [C)| < Cou™™

For 1 < u < o0,

0, 17,¢]| < Cru, 10, [C]] < Cou ™,
Using the definition of { and estimate (4.9)), we have

Cic? _ -
T, 28] = <b lcl>u 5 (14 u2)>

n —

be b2

e 0,[Z,(] - me_Q’\TQu [¢]

n—1
b —-(7162
>

—6 2\ 2—2A
n—1 “ (1+u)

b2
n—1 2(n—1)

We choose b, = ¢?(1+ Cy/(n — 1)), then for any b > b,, we have the fol-
lowing. For 0 < u < 1, there exists a constant By > 0 such that

M F, [z+ ] > Cu 8 <c2 — Csbeu™2e ™ — C’6b2u*4e*2)‘7>

ext
> Ciu~® (c2 — 056232_2 — 060232_2)

be o e (2,0l

0.,12,¢]| -
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provided that u2e™ > B3b/c, or equivalently,
b —AT/2
Boy/ -e <u<l.
c

‘u76(1 —|—u2)2’2’\) < Clu~2 9,

For 1 < u < o0, since

we have

N F, [z+ } > Cyu— 24 (CQ — Cseu e — 0602u—4/\€—2)\7')

ext
> Clu—2—4)\ <02 . C’g,bce_)‘T . 06b26—2)\7>
>0

for all 7 > 7 with 7 sufficiently large.
Therefore, 27, is indeed a supersolution. By a similar argument, z__, is
a subsolution. So the lemma is proven. O

Remark 4.4. See the proof of Lemma the asymptotics of {(u) as u 0o
implies that li/lm zéf{t(u, 7) =0 for all 7 > 7.
u /00

5. UPPER AND LOWER BARRIERS

According to Lemmata and the interior region i, and the ex-
terior region Qét overlap for sufficiently large 7. Our goal in this section
is to show that the regional supersolutions z;. and zJ, together with 2,
and z_, can be patched together to provide an upper and lower barriers,
respectively, for Ricci flow equation .

In the next two lemmata, we prove in each region the subsolution and
supersolution are ordered.

Lemma 5.1. Let 3(r,7), 71 and B; be defined as in Lemma . Fora™ >
a™, there exists T3 > 11 such that

2E =B (A (1 + aie_AT/Q) 1") + e M B(r, 7)

nt *

satisfy z, . < z;;t m {O <r< Ble)‘T/2} for all T > 3.

wnt

Proof. Using the asymptotic expansions of B (3.10) and g (4.5)), we have
the following for all sufficiently large 7 > 73 ger;. Near r = 0,

Zho— 2 = e™AT/2 (2b2A2 (a” —a") 2+ 0 (r4)) +e <—2AA_2 + 0(1))

int

> 0.
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Near r = oo, with A = (y +1)/2,

— 2= €T 247 (07 —a )P O (7)) 4T (1P 40 (177)
> 0.

+
z int

On any bounded interval ¢ < r < C, it is straightforward to check that
Zine < z . So the lemma is proved. [l

Remark 5.2. By choosing a~ >0 > a™, the proof of Lemma shows that
Zoe < B(Ar) <zt in {0<r < Ble/\T/Q} for all 7> 73.

1n

Lemma 5.3. Let B;, bE, ¢t ™ be from Lemma E and define Ry =
max {B;\ / %’ By IC’_} If ¢t > c™, then there exists 74 > To such that

2t = cie*)‘TZ( ) £ bie*”‘TC(u)

ext T

satisfy 2, < 2t in {Roe /2 < u < oo} for all T > 74.

ext

Proof. Using the definitions of Z and (, and choosing Cy > 0, and recall
that ¢ > ¢~ implies b™ > b~, we have

O (e — 2) = (¢ =€) Z(u) + 7 (b7 +57) C(w)
(ot ey A e (0T 40T (L (= DCo)

u? (n — Dut (1 4 u2)*!
>0

for all u € (0,00) for all sufficiently large 7 > 74 > 7. So the lemma is
proved. ([

To patch the supersolution in the interior region with that in the exterior
region, we state and prove a patching lemma for z, and z,. We omit the
patching lemma for z; , and z_, since its statement and proof are analogous.
To shorten the notatlon we write a™, bT, ¢T as a, b, c.

Remark 5.4. By choosing ¢~ < ¢ < ¢™, the proof of Lemma shows that
Zow <€ NceZ(u) < 2zt in {Rye /2 < u < oo} for all 7 > 74.

Lemma 5.5. Let 73 be from Lemma [5.1] and 74 from Lemma [5.3 Let
Rp := Dy/b/c where D > 0 is arbztmry Suppose A and c satisfy the
following inequality

(5.1) <1 - zD—2) c< A% < (1 - ;D‘2> ¢

Then there exists 15 > max{ts, 74} sufficiently large such that

(Z+ ewt) (RDa ) <0, (Z+ e:Et) (QRD, ) >0

int int

for all T > 5.
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Proof. At the interface of interior and exterior regions, we have the following
for 7 > 75. In the interior region, we have as r oo that

zt =B(r,7) + e MB(r,7)
= (A5 24 A 0 (7)) (140 (ae72) ) + 0 (7))
In the exterior region, we have as u = re~*7/2 \, 0 that
o= (e +01)) + e (but + O (u™?))

=24+ 140 (e_)‘TT‘_2>

So on bounded r-interval, we have
r? (s — 2e) = (A2 =) + (@A™ = b+ 0 (7)) 17240 (e77/2).
Let us choose a constant C' so large that for

b>CA™* and b>Cve,

2
CoC C C
= — < —,
bA4+O(b2>‘ -2
Then at T:RD,

2
R (25 — 7ae) = (A2 =) + [CQC +0 <C> - c} D72+ 0(re™7)

we have

bA4 b2
1
< A2 _ 152 —A7/2
<A (1+2D >c+0(e )
and at r = 2Rp,
2 -2
2 (.t + ) (A2 c2€ ¢ D AT
4RD(Zint_zeXt)_(A _C)+|:bA4+O<b2>—C:| 1 +O(T€ )

3
> A2 — (1 + 8D_2> c+ 0O (6_)‘7/2> .
Now choose A and ¢ according to (5.1), then the lemma follows for 7 >
T5. |

For fixed A # 1 and constants A, b*, ¢* chosen so far, we define the upper
barrier z* for equation (3.1]) by

Zi—;ta if O<u< Rpei)‘T/Q,
(5.2) 2= min{zh,, 25}, if Rpe™/? <w < 2Rpe /2,
z;—(ta if 2€7AT/2RD <u < 0.

The lower barrier 2z~ = 2z~ (u,7) for equation (3.1)) is defined analogously

. — . . — . — —AT/2
using z,, and z.; in particular, 27 := max{z, ,, 2.} for Rpe 12 <u<
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2Rpe /2. By remarks and we see that 2T stays strictly above the
formal solution and z~ strictly below the formal solution.

Lemmata together with Remarks [£.2] and [£.4] imply the following
proposition.
Proposition 5.6. There exist a sufficiently large 79 < oo and positive con-
tinuous, piecewise smooth functions z* = z*(u,7) defined for 0 < u < oo
and T > 19 such that the following hold.

(B1) z* are upper (+) and lower (—) barriers to equation , respec-

tively.

(B2) 2~ < zt; near u =0, 2% = zit; asu /oo, 2t = z;t.
(B3) At any T € [19,00), we have
limz~ =limzt =1, lim 2z~ = lim 27 =0.
u\0 u\0 u /' u oo

Remark 5.7. By construction, where z* (or z7) is not smooth, the corner
is concave (or convex).

We end this section with a comparison principle for the equation (3.1)).

Proposition 5.8. Let 7 € [rg,00) be arbitrary. Let z* be two non-negative
sub-(—) and super- (+) solutions of equation respectively. Moreover,
assume
(C1) 27 (u,m0) < 2 (u,10) for 0 < u < oo;
(C2) 2= (0,7) < 2+ (0,7), and lifm (27 (u,7) — 2% (u, 7)) <0 for all T €
u o0

[10, 7]
Then z= (u,7) < 2% (u,7) in [0,00) X [10,7].

Remark 5.9. In this proposition, we assume z* are smooth. The result also

holds for the continuous, piecewise smooth barriers z* constructed earlier,
see Remark When applying the comparison principle, we will only
evaluate 2% at “points of first contact with a given smooth function” which
are necessarily smooth points of z* for each 7 > 7.

Proof of Proposition[5.8. By (C1) and (C2), for any given € > 0, there exists
R = R(e) such that 2™ > 2z~ on [R,00) X [19,7] and (27 — 27) (R) > e.
Define
wi=¢ M (z+ — z_) + e,
where p > 0 is to be chosen. Then w > 0 on the parabolic boundary
of the evolution by assumptions (C1) and (C2). We claim that w > 0 in
(R,00) X [10,7]. Suppose the contrary, then there must be an interior point

u, and a first time 7, such that w(uy, 7) = 0 and w; (us, 7) < 0. Moreover,
at (u«, %), we have

S+
I
N
|
N
+
V
NI

2t =27 —ge™MT, 2
Then at (s, 74),

0> el™ 0| wr
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R
Qu{zﬂ — Qu[27]
2(n—1)

+ + 4
— (s _ Tt (Zu/u)_zuu ZT+z -1 —(,+ _ -
= ){“+ 2n—1) W }+Z (e =70

1
(o) U2

=ce " {u — (bounded term independent of p)}

> (st - o) (- ) +

Qulz1] — Qulz7]
2(n—1)

> e M {M -

Since € > 0 is fixed, we choose u sufficiently large, then at (u., 7.) we have
0> 0, w>0,

which is a contradiction. Hence, the claim is true. In the proof of the claim,
w may depend on ¢*, ¢~ and 7, but not on € > 0. Therefore, letting € — 0,
the proposition follows. O

6. PROOF OF THEOREM [L.1]

For any solution z of equation ({3.1]) we have the following.

Lemma 6.1. Suppose 0 < z < z*. If A\ > 0, then z determines a complete
rotationally symmetric metric g := 2z~ 'dy? + w2gsph on R,

Proof. By definition g is rotationally symmetric. To see that g is a complete
metric, it suffices to show that any radial geodesic vy starting from the origin
has infinite length in the s-coordinate. The length of v in s-coordinate is a
function of u and 7 given by

e—T/2

2(n—1)

v g
s(u,T)—U(u)—/ % g

0

Since z = 92 =2 (n —1)u2, and 0 < 2 < 2 by hypothesis, we have

v1 vl
o(u) > dd>/ du.
<)_/u()\/E B uo Vz+

A

Recall that

2t = e Meu? (1+ u2)1

ex

+ e P hy (1+ u2)2_2/\

So for ug and 79 sufficiently large, 2+ = 2, in [ug, 1) x [0, 00) with

+ o< AT, 2N

Zext ~

It follows that
6—7/2

—s(u,7) > / ——di = / dii > eAT/Q/ Wi = u —u
V2(n—1) up V2T up /Z;ct ug

Therefore, for each 7 > 79, lifm s(u, T) = 00, whence the lemma follows. O

1+A
0 -
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Since z = 12, where s is the arclength from the origin, and we are working
with complete metrics on R"™! we have v > 0. In particular, choosing
1 such that s > 0. As explained in [18,28], the condition ¥s > 0 can
be interpreted as the absence of minimal sphere in the manifold. Also,
our formal solution and barriers all satisfy lim s = 1 and lim s = 0.

sN\O+ s /too

The following lemma bounds v, along Ricci flow. In particular, minimal
hyperspheres cannot appear along the Ricci flow solution if none existed at
the initial time.

Lemma 6.2. Suppose that the initial metric gy satisfies 0 < s < 1, then
0 < s <1 for as long as the solution to Ricci flow exists.

Proof. Denoting v = 15, then by [1, Equation (16)] the evolution of v is

n—2 n—1

Vt = Ugs + 77}”8 + W

By the maximum principle, v < 1; by [18, Lemma3.1], v > 0. Thus, the
lemma is proved. [l

(1 —v?).

Remark 6.3. The condition s > 0 is interpreted as the absence of minimal
sphere in the manifold, cf. [18.[28].

We now prove the main results in this paper.

Proof of Theorem|[I.1 Let n+1 > 3 and fix A > 0. Let 75 be given in
Lemma [5.5] We pick 79 > 75 so that all results in Sections [f] and [5] apply.
Note that g = e.
Let 2% (u,7) and 2z~ (u,7) be given in Section |5, Then at 7 = 79, we have
0 < 2z (u,10) < 27 (u,79) for all u € (0,00). We define an initial data 2
between 2z (u, ) and 2~ (u, 1) as follows.
(1) On [MRpe=>™/2 00), where M > 2 is a constant to be specified, we
define Zo(u) = cu=2(1 + u?)'=* where ¢ € [¢™,ct]. By Remark
2= < %(u) < 2zt on [MRpe */2 00). Using

o T m DT
o2 2u2(n—1) 2r2(n-—1)
Lil—zil—z e 7 71—26()‘_1)7—
o2 w2 2ln—1) 12 2(n-—-1)
we have at 7 = 79 and on (MRDefATO/a 00),

2(n —1)e™(L - K)=u"2+0u %) >0

if we choose M > 2 large enough. Also recall and (3.16)), both
K and L decay to zero as u " oo.

(2) Recall the asymptotic expansion of B(r) as r \, 0 from (3.10). Then
there exists R, > 0 such that for r € [0, R.],

n
B(AT') = 1 — b2A2T2 + mb%A4T4 + O(T‘G).
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On [0, R.e /2], we define %(u) = B(Aue*™/?). At 7 = 14 and on
[0, R.e~™/2], we have 2~ < %y < zT by Remark we also have

n

2(n — 1)6(1_>\)T0(L - K) = =
n

b3 A +0(r*) > 0

if we choose R, to be small enough.

(3) On [Rye /2, MRpe*7/2], we connect %y in (1) with %y in (2) by
a piecewise linear continuous function strictly between 2z~ and 2.
This is possible since 2z~ < z+ for all u € (0,00). We have L > 0
and K = 0 where 2 is linear, so in this region L — K > 0 except at
finitely many points where Zy has a corner.

(4) By (1)-(3), we have a continuous, piecewise smooth function Zy de-
fined on [0, 00) such that at 7 = 79, 2~ < 29 < 21 everywhere, and
L— K >0 for all u € (0,00) except at finitely many points. We can
then smooth out 2y at to get a smooth zg for which 2= < 29 < 2T
and L — K > 0 for all u € (0,00) at 7 = 79.

By Lemma [6.1] zy determines a complete rotationally symmetric metric
go on R*1. Tt is straightforward to check that gy has bounded sectional cur-
vatures everywhere, and K and L decay to zero at spatial infinity. Since the
sectional curvatures depend smoothly on the metric, there is a neighbour-
hood of gg in the C? topology corresponding to an open set of z’s around z,
all of which lie between 2~ and 27, satisfy L — K > 0 everywhere, and de-
termine complete rotationally symmetric metrics with bounded curvatures.

There exists a unique solution ¢(t) to Ricci flow starting from go [10,29).
We choose 95 > 0 initially, so (R"*!, gg) does not contain any minimal
sphere. By construction, the sectional curvatures of gy decay to zero at
spatial infinity. Thus, ¢(¢) is immortal |18, Theorem 1.2].

The profile z(u,7) of g(t) is the unique solution of equation for
0 < u < oo and 7 > 79, with boundary condition z(0,7) = 1 and asymptotic
condition li/m z(u,7) = 0, and initial data z(u, 79) = zo. By the comparison

u /o0
principle in Proposition we have 0 < 27 (u,7) < 2(u,7) < 27 (u,7) for
all 7 > 79. In particular, z(u, 7) defines a complete, rotationally symmetric,
smooth metric g(t) on R"*! by Lemma

Ast =e" 7 oo, the asymptotic behaviour of the solution agrees with that

of the barriers, and hence with that of the formal solution. In particular,
the sectional curvatures of K (t) and L(t) of g(t) at the origin O are

K(t)lo=L{®)lo~t""

If we define o = ¢?(L — K), then a > 0 along the Ricci flow [18, Lemma
2.3]. Moreover, we have

85L=85<1¢§> ¢s

,¢2 = —2$Oé S 0,
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where we used 15 > 0 by Lemma[6.2] Hence, along the flow,

[Rm|* (-, t) = 2nK? + n(n — 1)L* < n(n+ 1)L* < n(n+1) L*|, = |Rm|2(O (1),

lo

which implies that sup |Rm(-,t)| is attained at the origin. Now part (1) of
Rn+1

Theorem [1.1{ is proved.

Since 2~ < z(u,7) < 2z for any 7 < 0o, and the solution z(u, ) exhibits
the asymptotic behaviour of z*. Near the origin, z(u, 7) converges uniformly
to the Bryant soliton profile function for 0 < v < Rpe™*". Near spatial
infinity, i.e., as u 7 0o, z(u,7) N\, 0 at a rate depending on A as is given
in , and so the sectional curvatures K and L are asymptotically flat
according to and , respectively. Thus, ¢(¢) has the asymptotic
behaviour described in parts (2) and (3) of Theorem

Therefore, Theorem is proved. ([
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