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Abstract. In this paper, we study the precise asymptotics of Type-IIb
solutions to Ricci flow on Rn+1. In each dimension n + 1 ≥ 3 and for
each real number λ > 0, we construct complete rotationally symmet-
ric solutions to Ricci flow on Rn+1 that form in infinite time Type-IIb
singularities with the curvature blow-up rate tλ−1. Near the origin, the
blow-ups of such a solution converge uniformly to the Bryant soliton;
near spatial infinity, the solution is asymptotically flat at a precise rate
depending on λ.

1. Introduction

A one-parameter family of (n+1)-dimensional complete smooth Riemann-
ian manifolds (M, g(t))t0≤t<t1 is said to evolve by Hamilton’s Ricci flow [21],
starting from an initial metric g0, if g(t) satisfies the equation

∂tg = −2 Ric(g), g(t0) = g0,(1.1)

where Ric(g) is the Ricci curvature of the metric.
Let (M, g(t)) be a solution to Ricci flow that exists up to a maximal time

T ≤ ∞. If T < ∞, then we say the Ricci flow has a finite-time singularity
of

• Type-I if sup
M×[t0,T )

(T − t)|Rm(·, t)| <∞,

• Type-IIa if sup
M×[t0,T )

(T − t)|Rm(·, t)| =∞.

If T = ∞, then the infinite-time singularity of this immortal Ricci flow is
said to be

• Type-III if sup
M×[t0,∞)

t|Rm(·, t)| <∞,

• Type-IIb if sup
M×[t0,∞)

t|Rm(·, t)| =∞.

If a Ricci flow solution encounters a Type-IIb (or Type-III) singularity, then
we also call it a Type-IIb (or Type-III) solution to Ricci flow. Analogous clas-
sifications hold for solutions to mean curvature flow (MCF) with |h(·, t)|2,

2010 Mathematics Subject Classification. 53C44 (primary), 35K59 (secondary).
Key words and phrases. Ricci flow; noncompact manifolds; Type-IIb singularity; pre-

cise asymptotics.

1



2 HAOTIAN WU

the second fundamental form of a hypersurface moving by MCF, replacing
|Rm(·, t)| in the above definitions.

Naturally, we have the following questions (cf. [13, Problem 8.6]): What
can be said about the specific blow-up rates of Ricci flow solutions with a
Type-IIa or Type-IIb singularity? What about the asymptotic properties of
Ricci flow solutions of each type near the singular time T?

In real dimension two, by the work of Hamilton [22] and Chow [11], Ricci
flow on S2 always encounters a Type-I singularity modelled by the round
sphere. On the other hand, Daskalopoulos and Hamilton [16] have showed
that Ricci flow on R2 starting from a metric of finite area forms a Type-IIa
singularity at the rate (T − t)−2. The precise description of the extinction
profile of such a solution were later given in [15] and [17]: the solution is
modelled by a cigar soliton in an inner region, and has a logarithmic cusp
in an outer region.

In real dimension three, Hamilton’s seminal work [21] says that Ricci
flow of a closed three-manifold with positive Ricci curvature forms a Type-I
singularity and shrinks to a round point. This result was later generalised
to higher dimensions under other curvature assumptions, e.g., the 2-positive
curvature operator by Böhm and Wilking [5]. These Type-I singularities are
global in the sense that the volume of the manifold at the singular time T
is zero. In comparison, there exist local singularities that form on compact
subsets of a manifold and the volume of the manifold remains positive at the
singular time T . For example, Type-I nondegenerate neckpinches modelled
by the round cylinder have been rigorously constructed on Sn+1 (n ≥ 2) by
Angenent and Knopf [1].

In real dimensions n+1 ≥ 3, Type-IIa singularity was first proved to exist
in Ricci flow on Sn+1 by Gu and Zhu [20]. Concerning the geometric details
of such a solution, Garfinkle and Isenberg [19] gave numerical evidence that
a degenerate neckpinch in Ricci flow on S3 is a Type-IIa singularity modelled
by the rotationally symmetric Bryant soliton, which was first constructed by
Bryant [8] and has been proven by Brendle to be the unique complete non-
flat steady gradient Ricci soliton in dimension three under a non-collapsing
assumption [6]; see also Brendle’s generalisation to higher dimensions [7].
In [3], Angenent, Isenberg and Knopf have constructed on Sn+1 Ricci flow
with Type-IIa singularities modelled on the Bryant soliton with curvature
blow-up rate (T − t)−2+2/k for each integer k ≥ 3. In contrast, Type-IIa
singularities to Ricci flow on Rn+1 (n ≥ 2) with curvature blow-up rates

(T − t)−(λ+1) for any real number λ ≥ 1 have been constructed by the
author in [32]. There are also corresponding results on Type-IIa singularities
in MCF by the author and his collaborators [23,24].

There are several recent results on Ricci flow with Type-IIa singularities.
Appleton [4] has showed that Ricci flow on a noncompact four-manifold
can develop Type-IIa singularities modelled on the Eguchi-Hanson space.
Di Giovanni [18] has proved that asymptotically cylindrical Ricci flow on
Rn+1 without minimal sphere forms a Type-IIa singularity modelled on the
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Bryant soliton after suitable dilations. Stolarski [30] has constructed on
certain product manifolds Ricci flows that form Type-IIa singularities with
curvature blow-up rates given by arbitrarily large powers of (T − t)−1 . If
we specialise the Ricci flow to Kähler manifolds, then Li, Tian and Zhu have
given the first examples of Type-IIa singularities on Fano manifolds [27].

Concerning the Type-IIb singularities in Ricci flow, the simplest example
on compact manifolds is a non-flat Ricci-flat Kähler metric on a K3 surface,
whose existence follows from Yau’s resolution [33] of the Calabi Conjecture;
note that this solution is static under Ricci flow. Further results on Kähler-
Ricci flows with Type-IIb singularities have been obtained by Tosatti and
Zhang [31]. It has been conjectured [12, Conjecture A.38] that Ricci flow on
a closed 3-manifolds never forms a Type-IIb singularity .

In general, any steady Ricci soliton is a Type-IIb solution to Ricci flow.
Examples of steady Ricci solitons include the cigar soliton on R2 and the
Bryant soliton on Rn for n ≥ 3. Both the cigar soliton and the Bryant soliton
are rotationally symmetric. Many non-rotationally symmetric steady Ricci
solitons have been found recently. Notably, Lai [26] has constructed Z2 ×
O(n)-symmetric, non-rotationally symmetric, steady gradient Ricci solitons
on Rn+1 for n ≥ 2. Taking the product of a steady Ricci soliton with Rk
(k ≥ 1) produces (somewhat trivially) a Type-IIb solution to Ricci flow.
Additional example of Type-IIb solution is found in [9], where Cabezas-
Rivas and Wilking constructed an immortal 3-dimensional non-negatively
curved complete Ricci flow with unbounded curvature for all time.

In this paper, we are interested in constructing non-Kähler, non-soliton
solutions to Ricci flow with Type-IIb singularities on a complete noncompact
manifold and analysing their precise asymptotics as t↗∞.

Throughout this paper, we use Ck (k ∈ N) to denote a positive constant
that depends at most on n or λ, and may change from line to line. The
expression “f . g” means f ≤ Ckg for some constant Ck; “A ∼ B”if and
only if A . B and B . A.

Our main result is the following.

Theorem 1.1. In each dimension n + 1 ≥ 3, for each real number λ > 0,
there exists an open set (in C2 topology) G of complete rotationally symmet-
ric metrics, none of which is the Bryant soliton, on Rn+1 such that Ricci
flow starting at each g0 ∈ G has a unique solution g(t) for t ∈ [t0,∞). The
solution g(t) has the following asymptotic properties as t↗∞.

(1) The singularity is Type-IIb with

sup
Rn+1

|Rm(·, t)| ∼ tλ−1

attained at the origin of Rn+1.
(2) If we rescale the solution so that the distance from the origin rescales

at the rate t−(1−λ)/2, then the metric converges uniformly on inter-
vals of order t(1−λ)/2 to the Bryant soliton.
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(3) Near spatial infinity, the metric is asymptotically flat, i.e., |Rm(·, t)| →
0, for all t ≥ 0, with the precise asymptotics at spatial infinity de-
scribed in Section 3.4.

In particular, the solution exhibits the asymptotic behaviour of the formal
solution described in Section 3.

Theorem 1.1 constructs Type-IIb solutions to Ricci flow on Rn+1 for n ≥ 2
that are not soliton or Kähler. These solutions (and also the Bryant soliton)
show that the exponent (λ − 1) of the Type-IIb blow-up rate tλ−1 belongs
to a continuum (−1,∞). The curvature blow-up rates of previous examples
of Type-IIb solutions are restricted, e.g. λ = 1 for steady Ricci solitons.
We note that a continuum of curvature blow-up rates has been observed
for Type-IIa singularities in Ricci flows on Rn+1 [32]. As t ↗ ∞, the Ricci
flow solutions constructed in Theorem 1.1 converge uniformly to a non-
Euclidean flat metric (cf. Remark 3.3) if λ ∈ (0, 1) and otherwise if λ ≥ 1.
As previously mentioned, the Bryant soliton is a Type-IIb solution whose
curvature blow-up rate is tλ−1 with λ = 1. So we may ask whether or not
the Bryant soliton appears as a “phase change” among Type-IIb solutions
to Ricci flow when the parameter λ varies across the “critical value” λ = 1.
Lastly, one may compare Theorem 1.1 for Ricci flow with the construction
of Type-IIb solutions to MCF in [25].

The proof of Theorem 1.1 uses matched asymptotic analysis and barrier
arguments for nonlinear PDE. The same strategy has been implemented for
Ricci flow or mean curvature flow with Type-IIa singularities in [23,24,32],
and Type-IIb MCF solutions in [25]. In Section 2, we recall the set-up
for rotationally symmetric Ricci flow on Rn+1 and collect some basic facts.
In Section 3, we derive approximate (formal) solutions using the method
of formal matched asymptotics. In Section 4, we use these approximate
solutions to construct the corresponding supersolutions and subsolutions
to the rescaled PDE. The supersolutions and subsolutions are ordered and
patched together in Section 5 to create barriers to the rescaled PDE; a
comparison principle for the subsolutions and supersolutions is also proved
there. In Section 6, we complete the proof of Theorem 1.1.

Acknowledgements. We thank the anonymous referees for many valuable
comments. This work is partially supported by the ARC grant DE180101348.

2. Preliminaries

Let O denote the origin of Rn+1 (n ≥ 2). We identify Rn+1 \ O with
(0,∞)× Sn and equip it with the time-dependent warped product metric

g = ϕ2(x, t)dx2 + ψ2(x, t)gsph,

where x ∈ (0,∞) and gsph is the metric of constant sectional curvature one
on Sn.
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We recall some basic facts about such a metric, cf. [3, Section 2]. The
distance s to the origin is

s(x, t) :=

∫ x

0
ϕ(y, t)dy.

In the s-coordinate, the metric becomes

g = ds2 + ψ2 (s, t) gsph.(2.1)

If we extend the metric g to a complete smooth metric, still denoted by g,
on Rn+1, then ψ necessarily satisfy the boundary conditions

lim
x↘0

ψ = 0 and lim
x↘0

ψs = 1.

In this paper, we use the notation ∂t|· for taking the time derivative while
keeping the quantity “·” fixed. Then

[∂t|x , ∂s] = −nψss
ψ
∂s.

In the s-coordinate, the Ricci flow system (1.1) is reduced to the following
parabolic PDE for ψ,

∂t|x ψ = ψss − (n− 1)
1− ψ2

s

ψ
.(2.2)

The function ϕ, which is suppressed in the s-coordinate, evolves under Ricci
flow by

∂t|x logϕ = n
ψss
ψ
.

Let K denote the sectional curvature of a two-plane with one radial and
one spherical direction and L the sectional curvature of a two-plane tangen-
tial to the sphere {x} × Sn. Then

K = −ψss
ψ
, L =

1− ψ2
s

ψ2
.(2.3)

In particular, |Rm|2 = 2nK2 + n(n− 1)L2.
Since the metric g is smooth and lim

x↘0
ψs = 1, we must have ψs > 0 in a

neighbourhood of the origin O. So we can use ψ as a new coordinate near
the origin to write

g = z(ψ, t)−1dψ2 + ψ2gsph,(2.4)

where z (ψ, t) := ψ2
s . Then the sectional curvatures are rewritten as

K = −
zψ
2ψ
, L =

1− z
ψ2

.(2.5)

Under Ricci flow, the metric (2.4) evolves by (see [3, Section 2.2])

∂t|ψ z = Eψ[z],(2.6)
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where Eψ is the purely local quasilinear operator

Eψ[z] := zzψψ −
1

2
z2ψ + (n− 1− z)

zψ
ψ

+ 2(n− 1)
(1− z)z
ψ2

.

The boundary conditions we impose for equation 2.6 are

lim
ψ↘0

z = 1, lim
ψ↗∞

z = 0.

We can split Eψ into a linear part and a quadratic part:

Eψ[z] = Lψ[z] + Qψ[z],

where

Lψ[z] := (n− 1)

(
zψ
ψ

+ 2
z

ψ2

)
,(2.7)

Qψ[z] := zzψψ −
1

2
z2ψ −

zzψ
ψ
− 2(n− 1)

z2

ψ2
.(2.8)

The quadratic part defines a symmetric bilinear operator

Q̂ψ[z1, z2] :=
1

2
[z1(z2)ψψ + z2(z1)ψψ − (z1)ψ(z2)ψ](2.9)

−
z1(z2)ψ + z2(z1)ψ

2ψ
− 2(n− 1)

z1z2
ψ2

.(2.10)

In particular, Qψ[z] = Q̂ψ[z, z].

3. Formal solutions

The basic idea behind the construction of the formal solutions, (i.e. ap-
proximate solutions) is to analyse the evolution equation (2.6) under various
rescalings of ψ and find approximate solutions to the rescaled PDEs. The
formal solutions serve as the approximate models which the solutions we
discuss here asymptotically approach.

We introduce the following rescaled variables

τ := log t,

σ :=
s√

2(n− 1)t
,

u :=
ψ√

2(n− 1)t
.

Since we are interested in the asymptotic behaviour of the solution when
t↗∞, we can assume t0 ≥ 1, and so τ0 = log t0 ≥ 0.

In the (u, τ)-coordinates, equation (2.6) becomes the following evolution
equation for z(u, τ).

∂τ |u z =
1

2(n− 1)
Eu[z] +

1

2
uzu,(3.1)
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where τ ∈ [log t0,∞), u ∈ (0,∞) and z ∈ (0, 1], and the boundary conditions
for (3.1) are lim

u↘0
z = 1 and lim

u↗∞
z = 0. In particular, z ∈ (0, 1] under Ricci

flow, which is proved in Lemma 6.2. We seek solutions of equation (3.1)
subject to the boundary condition z(0, τ) = 1 and the asymptotic condition
lim
u↗∞

z(u, τ) = 0 for all τ ≥ τ0. In particular, the asymptotic condition that

z ↘ 0 as u↗∞ is compatible with the consideration of asymptotically flat
Riemannian manifolds whose metrics ds2 + ψ(s)2gsph are defined by ψ(s)
with sublinear growth in s, cf. Section 3.4.

3.1. Formal solution in the exterior region. The exterior region is ex-
pected to be a time-dependent subset in which u ∈ (0,∞) and z ∈ (0, 1).
Motivated by the asymptotic condition lim

u↗∞
z(u, τ) = 0 for all τ ≥ τ0, we

adopt the following ansatz

z =

∞∑
m=1

e−mλτZm(u),

where λ > 0 is a parameter to be specified.

Remark 3.1. This ansatz has been used in constructing Ricci flow solutions
with Type-IIa singularities in both the compact setting [3] and the non-
compact setting [32].

We substitute this ansatz into equation (3.1) and split Eu[z] into the linear
and quadratic parts as given in (2.7) and (2.8), respectively. By comparing
the coefficients of e−mλτ in the resulting equation, we see each Zm must
satisfy the ODE

1

2

(
u−1 + u

) dZm
du

+
(
u−2 +mλ

)
Zm = − 1

2(n− 1)

m−1∑
i=1

Q̂u [Zi, Zm−i] .(3.2)

When m = 1, Z1 satisfies the linear homogeneous equation

1

2

(
u−1 + u

) dZ1

du
+
(
u−2 + λ

)
Z1 = 0,(3.3)

whose general solution is

Z1(u) = cu−2
(
1 + u2

)1−λ
(3.4)

for an arbitrary constant c 6= 0.
When m = 2, equation (3.2) becomes

1

2

(
u−1 + u

) dZ2

du
+
(
u−2 + 2λ

)
Z2 = − 1

2(n− 1)
Qu [Z1] ,(3.5)

where

Qu [Z1] = 2c2u−6
(
1 + u2

)−2λ (
4− n(1 + u2)2 + u4(1 + λ)2 + 2u2(3 + λ)

)
.
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The general solution of equation (3.5) is

Z2(u) =
u−2

(
1 + u2

)1−2λ
n− 1

f(u),

where

f(u) := C1 − 2c2
(
n− 4

u2
+

1− λ2

1 + u2

)
− 2c2(λ− 1) log

(
u2

1 + u2

)
(3.6)

for some arbitrary constant C1.
Let us now analyse the asymptotics of e−λτZ1(u) + e−2λτZ2(u) as u↘ 0

and u↗∞, respectively. It is straightforward to see that

e−2λτZ2(u)

e−λτZ1(u)
=

e−λτ

c(n− 1)

(
1 + u2

)−λ
f(u),

where f(u) as defined in (3.6) has the following asymptotics

f(u) ∼

{
c2u−2 +O

(
c2 log(u2)

)
, u↘ 0,

C1 + c2u−2, u↗∞.
Therefore, we obtain

e−2λτZ2(u)

e−λτZ1(u)
=

{
ce−λτ

(
u−2 +O (log u)

)
, u↘ 0,

e−λτu−2λ
(
C1 + c2u−2

)
, u↗∞.

Consequently, we always have

lim
u↗∞

∣∣∣∣e−2λτZ2(u)

e−λτZ1(u)

∣∣∣∣ = 0(3.7)

for all τ ≥ τ0. On the other hand, if u = e−λτ/2R for some fixed R > 0, then∣∣∣∣e−2λτZ2(u)

e−λτZ1(u)

∣∣∣∣ . c(R−2 + e−λτO (logR+ τ)
)
,(3.8)

which is small for all sufficiently large τ if for a given c we choose R to be
large.

Let us label the region where ueλτ/2 = O(1) as the interior region. The
complement of the interior region is labelled as the exterior region. The
estimates (3.7) and (3.8) allow us to use the dominant term e−λτZ1(u) as a
formal solution (i.e., an approximate solution) in the exterior region, so we
define

zform, ext = cu−2
(
1 + u2

)1−λ
e−λτ .

3.2. Formal solution in the interior region. In the interior region where
ueλτ/2 = O(1), we introduce a new variable

r := ueλτ/2.

Then in the (r, τ)-coordinates, since

∂τ |r z = ∂τ |u z −
λ

2
uzu = ∂τ |u z −

λ

2
rzr,
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Eu[z] = eλτEr[z],

equation (3.1) for z(u, τ) becomes the following evolution equation for z(r, τ):

e−λτ
{
∂τ |r z +

λ− 1

2
rzr

}
− 1

2(n− 1)
Er[z] = 0.(3.9)

Suppose, for the sake of the formal argument, that the term involving e−λτ

is negligible for sufficiently large τ , then this equation is approximated by
the equation

Er [z̃] = 0,

whose solution, subject to the boundary z̃(0) = 1 and the asymptotic con-
dition lim

r↗∞
z̃(r) = 0, is a Bryant soliton profile function

z̃(r) = B (Ar) ,

where A > 0 is a constant whose value will be determined later. The com-
plete smooth metric given by

g = B−1 (Ar) dr2 + r2gsph

is a scaled version of the Bryant soliton [8].
The function B(r) is smooth and strictly monotonically decreasing for all

r > 0 with the following asymptotics

B(r) =

{
1− b2r2 + b3r

4 + b4r
6 + · · · , r ↘ 0,

c1r
−2 + c2r

−4 + c3r
−6 + · · · , r ↗∞,

(3.10)

where bk’s and ck’s are constants; in particular, b2 > 0, and b3 = n
n+3b

2
2

[2, Appendix B]. In this paper, we normalize B(r) by setting c1 = 1. In the
interior region, our formal solution is

zform, int = B (Ar) .

Remark 3.2. If λ = 1, then r = ueτ/2 = ψ/
√

2(n− 1). In this case, the

Bryant soliton B (Ar) = B
(
Aψ/

√
2(n− 1)

)
solves equation (2.6) and gives

a trivial example of Ricci flow with Type-IIb singularity with the highest
curvature blowing up at the rate O

(
tλ−1

)
= O

(
λ0
)

= O(1). Our focus in
Theorem 1.1 is to construct different solutions for λ 6= 1.

3.3. Matching condition. We now match the formal solutions at the in-
terface of the interior region and the exterior region. If we pick r = R� 1,
then in the interior region, using the asymptotics of zform, int as r ↗∞, we
have

zform, int = B (AR) ≈ A−2R−2;(3.11)

in the exterior region, using the asymptotics of zform, ext as u↘ 0 and that

u = Re−λτ/2, we have

zform, ext = cu−2
(
1 + u2

)1−λ
e−λτ ≈ cR−2.(3.12)
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Equating (3.11) and (3.12), we obtain the matching condition for the formal
solution

A−2 = c.(3.13)

The condition 3.13 says that given A and R > 0, we can always find such c;
equivalently, fixing c and R, then A is determined.

3.4. Features of the formal solution. Our formal solutions defined in the
interior region and the exterior region are valid for all dimensions n+ 1 ≥ 3
and give rise to Riemannian metrics on Rn+1 as defined in (2.4). In fact,
these Riemannian metrics are complete, as will be proven in Lemma 6.1.
Since zform, ext = e−λτ cu−2(1 + u2)1−λ, we have at any τ < ∞, as u ↗ ∞,

i.e., ψ =
√

2(n− 1)ueτ/2 ↗∞, that

z = ψ2
s ∼ e−λτ cu−2λ ∼ cψ−2λ,(3.14)

K = −
zψ
2ψ
∼ − zu

2u
e−τ ∼

(
tu2
)−(1+λ) ∼ ψ−2(1+λ),(3.15)

L =
1− z
ψ2

=
1− z
u2

e−τ ∼
(
tu2
)−1 ∼ ψ−2.(3.16)

Remark 3.3. Conditions (3.15) and (3.16) imply that the metrics given by
the barriers (cf. Section 5), and hence the Ricci flow solutions described in
Theorem 1.1 (cf. Section 6), are in fact asymptotically flat in the sense that
|Rm | → 0 as one approaches spatial infinity. Recall that an asymptotically
conical metric on Rn+1 is given by ds2 + α2s2gsph, where α ∈ (0, 1] with
the case α = 1 being the Euclidean metric. For an asymptotically conical
metric, z = ψ2

s = α2 > 0. As will be shown in Section 6, the solutions
in Theorem 1.1 do not satisfy z ≡ 1 and therefore are non-Euclidean, the
solutions are not asymptotically conical either since lim

s↗∞
z = 0. Condition

(3.14) implies that the metric ds2 + ψ2gsph we construct in this paper are
not asymptotically Euclidean in the sense considered in [14] or [28].

As we move towards the origin O, z(u) ↗ 1 and we enter the interior
region where the formal solution zform, int is a Bryant soliton profile function.
At O, we have K(O, t) = L(O, t) for all t ≥ t0, and the norm of the curvature
tensor achieves its maximum value

|Rm (O, t)| =
√
n(n+ 1)L(O, t) =

√
n(n+ 1)

2(n− 1)
lim
r↘0

1− z
r2

e(λ−1)τ = tλ−1C,

where C is a positive constant depending on n,A, b2; to be precise, C =√
n(n+1)A2b2
2(n−1) . Therefore, the formal solution has a Type-IIb singularity if λ >

0. In particular, the curvature of a Ricci flow solution that asymptotically
approaches this formal solution necessarily blows up at the same rate.
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4. Subsolutions and supersolutions

Given a parabolic differential operator P[v] = ∂τv − D[v] where D[·] is
some second-order elliptic operator, a function v+ is a subsolution of the
PDE P[v] = 0 if P [v+] ≤ 0 whereas a function v− is a supersolution if
P [v−] ≥ 0. If there exist subsolution v− and supersolution v+ and in addi-
tion, v− ≤ v+, then we call v− a lower barrier and v+ an upper barrier.

Suppose the equation P[v] = 0 admits a solution, then the existence of
barriers v− ≤ v+ implies that there exists a solution v with v− ≤ v ≤ v+.
This is the general idea of our argument which will be justified rigorously
in this section and next. In this section, we construct subsolutions and
supersolutions for equation (3.1) in the interior and the exterior regions. In
the next section, we patch them to obtain global upper and lower barriers.

4.1. Interior region. Recall equation (3.9) for z(r, τ). Let us define

Tr[z] := e−λτ
{
∂τ |r z +

λ− 1

2
rzr

}
− 1

2(n− 1)
Er[z](4.1)

so then z(r, τ) satisfies the equation Tr[z] = 0 in the interior region. The
subsolution and supersolution for this equation in the interior region are
given in the next lemma.

Lemma 4.1. For an integer n ≥ 2, a real number λ > 0, a constant A > 0
and arbitrary constants a±, there exist a sufficiently large τ1 <∞, a constant
B1 > 0 depending only on A, and bounded functions β±(r, τ) : (0,∞) ×
[τ1,∞)→ R depending on A and a± such that the functions

z±int(r, τ) := B
(
A
(

1 + a±e−λτ/2
)
r
)
± e−λτβ±(r, τ)(4.2)

are supersolution (+) and subsolution (−), respectively, of Tr[z] = 0 in the

region Ωint :=
{

0 ≤ r ≤ B1e
λτ/2

}
for all τ ≥ τ1.

Proof. Let us denote B±(r, τ) := B
(
A
(
1 + a±e−λτ/2

)
r
)
. Then

∂τ |rB
± = rB±r

−λa±e−λτ/2

2(1 + a±e−λτ/2)
.

In order for z+int = B+(r, τ) + e−λτβ+(r, τ) to be a supersolution, we need

to show Tr
[
z+int
]
≥ 0. Below, for notational clarity, we drop the superscript

“+”.
Since B(r, τ) solves Er[z] = 0, we obtain

Tr
[
z+int
]

=e−λτ

{
−Lr[β] + 2Q̂r[B, β]

2(n− 1)
+
λ− 1

2
rBr

}

+ e−3λτ/2rBr
−λa

2(1 + ae−λτ/2)

+ e−2λτ
{
−λβ + ∂τ |r β +

λ− 1

2
rβr −

Qr[β]

2(n− 1)

}
.
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Set Â := 1 + λ−1
2 = λ+1

2 > 0, we define β(r, τ) to be a solution of the
equation

Lr[β] + 2Q̂r[B, β] = 2(n− 1)ÂrBr.(4.3)

Using the definitions of Lr in (2.7) and Q̂r in (2.8) respectively, equation
(4.3) becomes

Bβrr+

{
n− 1

r
−Br −

B

r

}
βr +

{
Brr −

Br

r
+ 2(n− 1)

1− 2B

r2

}
β = 2(n− 1)ÂrBr.

(4.4)

Using the asymptotic expansions of B(r, τ) near r = 0 and r = ∞ given in
(3.10), we have the following. Near r = 0, equation (4.4) is approximated
by

βrr +
n− 2

r
βr −

2(n− 1)

r2
β = −C1r

2
(

1 +O
(
ae−λτ/2

))
,

where C1 = 2(n−1)(γ+1)b2A
2. Near r =∞, equation (4.4) is a perturbation

of the following equation

1 +O
(
ae−λτ/2

)
(Ar)2

βrr +
n− 1

r
βr +

2(n− 1)

r2
β = −4(n− 1)Â

(Ar)2

(
1 +O

(
ae−λτ/2

))
.

So there exists a solution β to equation (4.3) with the following asymptotics

β(r, τ) =

 r2 +O
(
r4
(
1 + ae−λτ/2

))
, r ↘ 0,(

−2Â/A2 + o (1)
) (

1 +O
(
ae−λτ/2

))
, r ↗∞.

(4.5)

Also, the asymptotic expansions

−rBr =

{ (
C7r

2 + o
(
r2
)) (

1 +O
(
ae−λτ/2

))
, r ↘ 0,(

C8r
−2 + o

(
r−2
)) (

1 +O
(
ae−λτ/2

))
, r ↗∞,

imply that

−rBr ≥ C9 min
{
r2, r−2

}
.

Then in view of (4.5), we have for 0 < r ≤ 1,∣∣∣∣−λβ + ∂τ |r β +
λ− 1

2
rβr −

Qr[β]

2(n− 1)

∣∣∣∣ ≤ C10r
2,

and hence

Tr
[
z+int
]
≥ −e−λτrBr − e−3λτ/2C7r

2 − e−2λτC10r
2

≥ e−λτr2
(
C9 − e−λτ/2C7 − e−λτC10

)
> 0

for all τ ≥ τ1 with τ1 sufficiently large. And for r ≥ 1 and τ ≥ τ1,∣∣∣∣−λβ + ∂τ |r β +
λ− 1

2
rβr −

Qr[β]

2(n− 1)

∣∣∣∣ ≤ C11,
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so then

Tr
[
z+int
]
≥ −e−λτrBr − e−3λτ/2C8r

−2 − e−2λτC11

≥ e−λτ
(
C9r

−2 − e−λτ/2C8r
−2 − e−λτC11

)
> 0

provided that r < B1e
λτ/2 with constant B1 :=

√
C9/(2C11).

Therefore, z+int is indeed a supersolution. That z−int is a subsolution is
proved similarly. So the lemma follows. �

Remark 4.2. See the proof of Lemma 4.1, the asymptotics of B(r) and β(r, τ)
as r ↘ 0 imply that lim

r↘0
z±int(r, τ) = 1 for all τ ≥ τ1.

4.2. Exterior region. Recall equation (3.1) for z(u, τ). We define

Fu[z] := ∂τ |u z −
1

2(n− 1)
Eu[z]− 1

2
uzu,(4.6)

= ∂τ |u z −
1

2

(
u−1 + u

)
− u−2z − Qu[z]

2(n− 1)
,(4.7)

where we used Eu[z] = Lu[z] + Qu[z], (2.7) and (2.8). In this region, z(u, τ)
satisfies the equation Fu[z] = 0. The next lemma takes care of the subsolu-
tion and supersolution for this equation in the exterior region.

From now on, we define Z(u) := u−2
(
1 + u2

)1−λ
. We note that Z(u) > 0

for all u ∈ (0,∞).

Lemma 4.3. For an integer n ≥ 2, a real number λ > 0 and constants
c± > 0, there exist function ζ : (0,∞)→ R, constants B±2 > 0, a sufficiently
large τ2 < ∞, and constants b±∗ depending only on c±, respectively, such
that for any b ≥ b±∗ > 0, the functions

z±ext(u, τ) := c±e−λτZ(u)± b±e−2λτζ(u)(4.8)

are supersolution (+) and subsolution (−), respectively, of Fu[z] = 0 in the

region Ω±ext :=

{
B±2

√
b±

c± e
−λτ/2 ≤ u <∞

}
and for all τ ≥ τ2.

Proof. We first prove the lemma for z+ext. To simplify notation, we omit the
superscript “+” in the argument below.

Since Z(u) is a solution of the ODE (3.3), we have

e2λτFu
[
z+ext
]

= b

{
−1

2

(
u−1 + u

)
ζ ′ −

(
u−2 + 2λ

)
ζ

}
− c2

2(n− 1)
Qu[Z]

− bc

n− 1
e−λτ Q̂u[Z, ζ]− b2

2(n− 1)
e−2λτQu[ζ].

Since

Qu [Z] = 2u−6
(
1 + u2

)−2λ
f(u),
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where

f(u) = 4− n(1 + u2)2 + u4(1 + λ)2 + 2u2(3 + λ),

we have for u ∈ (0,∞),

|f(u)| ≤ C1(1 + u2)2(4.9)

for some constant C1 depending only on n and λ.
Let ζ : (0,∞)→ R be a solution of the ODE

−1

2

(
u−1 + u

)
ζ ′ −

(
u−2 + 2λ

)
ζ = u−6

(
1 + u2

)2−2λ
.(4.10)

Then we solve this ODE to obtain

ζ(u) := u−4
(
1 + u2

)1−2λ (
1 + C2u

2
)

for an arbitrary constant C2. Let us choose C2 = 1, so

ζ(u) := u−4
(
1 + u2

)2−2λ
.(4.11)

In particular, ζ(u) > 0 for all u ∈ (0,∞).
From (4.11), the asymptotics of ζ are

ζ(u) =

{
u−4 +O

(
u−2

)
, u↘ 0,

C4u
−4λ +O

(
u−2−4λ

)
, u↗∞.

So the following estimates hold. For B2e
−λτ/2 ≤ u < 1,∣∣∣Q̂u [Z, ζ]

∣∣∣ ≤ C5u
−8, |Qu [ζ]| ≤ C6u

−10

For 1 ≤ u <∞,∣∣∣Q̂u [Z, ζ]
∣∣∣ ≤ C7u

−2−6λ, |Qu [ζ]| ≤ C8u
−2−8λ.

Using the definition of ζ and estimate (4.9), we have

e2λτFu
[
z+ext
]

=

(
b− C1c

2

n− 1

)
u−6

(
1 + u2

)2−2λ
− bc

n− 1
e−λτ Q̂u[Z, ζ]− b2

2(n− 1)
e−2λτQu [ζ]

≥ b− C1c
2

n− 1
u−6

(
1 + u2

)2−2λ
− bc

n− 1
e−λτ

∣∣∣Q̂u[Z, ζ]
∣∣∣− b2

2(n− 1)
e−2λτ |Qu[ζ]| .

We choose b∗ = c2 (1 + C1/(n− 1)), then for any b ≥ b∗, we have the fol-
lowing. For 0 < u ≤ 1, there exists a constant B2 > 0 such that

e2λτFu
[
z+ext
]
≥ C1u

−6
(
c2 − C5bcu

−2e−λτ − C6b
2u−4e−2λτ

)
≥ C1u

−6 (c2 − C5c
2B−22 − C6c

2B−22

)
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≥ C1

2
u−6c2

> 0

provided that u2eλτ ≥ B2
2b/c, or equivalently,

B2

√
b

c
e−λτ/2 ≤ u ≤ 1.

For 1 ≤ u <∞, since ∣∣∣u−6(1 + u2)2−2λ
∣∣∣ ≤ C1u

−2−4λ,

we have

e2λτFu
[
z+ext
]
≥ C1u

−2−4λ
(
c2 − C5cu

−2λe−λτ − C6c
2u−4λe−2λτ

)
≥ C1u

−2−4λ
(
c2 − C5bce

−λτ − C6b
2e−2λτ

)
> 0

for all τ ≥ τ2 with τ2 sufficiently large.
Therefore, z+ext is indeed a supersolution. By a similar argument, z−ext is

a subsolution. So the lemma is proven. �

Remark 4.4. See the proof of Lemma 4.3, the asymptotics of ζ(u) as u↗∞
implies that lim

u↗∞
z±ext(u, τ) = 0 for all τ ≥ τ2.

5. Upper and lower barriers

According to Lemmata 4.1 and 4.3, the interior region Ωint and the ex-
terior region Ω±ext overlap for sufficiently large τ . Our goal in this section
is to show that the regional supersolutions z+int and z+ext together with z−int
and z−ext can be patched together to provide an upper and lower barriers,
respectively, for Ricci flow equation (3.1).

In the next two lemmata, we prove in each region the subsolution and
supersolution are ordered.

Lemma 5.1. Let β(r, τ), τ1 and B1 be defined as in Lemma 4.1. For a− >
a+, there exists τ3 ≥ τ1 such that

z±int := B
(
A
(

1 + a±e−λτ/2
)
r
)
± e−λτβ(r, τ)

satisfy z−int < z+int in
{

0 ≤ r ≤ B1e
λτ/2

}
for all τ ≥ τ3.

Proof. Using the asymptotic expansions of B (3.10) and β (4.5), we have
the following for all sufficiently large τ ≥ τ3 geτ1. Near r = 0,

z+int − z
−
int = e−λτ/2

(
2b2A

2
(
a− − a+

)
r2 +O

(
r4
))

+ e−λτ
(
−2ÂA−2 + o(1)

)
> 0.
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Near r =∞, with Â = (γ + 1)/2,

z+int − z
−
int = e−λτ/2

(
2A−2

(
a− − a+

)
r−2 +O

(
r−4
))

+ e−λτ
(
r−2 + o

(
r−2
))

> 0.

On any bounded interval c < r < C, it is straightforward to check that
z−int < z+int. So the lemma is proved. �

Remark 5.2. By choosing a− > 0 > a+, the proof of Lemma 5.1 shows that
z−int < B(Ar) < z+int in

{
0 ≤ r ≤ B1e

λτ/2
}

for all τ ≥ τ3.

Lemma 5.3. Let B±2 , b
±, c±, τ2 be from Lemma 4.3 and define R2 :=

max

{
B+

2

√
b+

c+
, B−2

√
b−

c−

}
. If c+ ≥ c−, then there exists τ4 ≥ τ2 such that

z±ext := c±e−λτZ(u)± b±e−2λτζ(u)

satisfy z−ext < z+ext in {R2e
−λτ/2 < u <∞} for all τ ≥ τ4.

Proof. Using the definitions of Z and ζ, and choosing C2 ≥ 0, and recall
that c+ ≥ c− implies b+ > b−, we have

eλτ
(
z+ext − z

−
ext

)
=
(
c+ − c−

)
Z(u) + e−λτ

(
b+ + b−

)
ζ(u)

=
(
c+ − c−

) (1 + u2)1+λ

u2
+ e−λτ

(b+ + b−)
(
1 + (n− 1)C2u

2
)

(n− 1)u4 (1 + u2)2λ−1

> 0

for all u ∈ (0,∞) for all sufficiently large τ ≥ τ4 ≥ τ2. So the lemma is
proved. �

To patch the supersolution in the interior region with that in the exterior
region, we state and prove a patching lemma for z+int and z+ext. We omit the

patching lemma for z−int and z−ext, since its statement and proof are analogous.
To shorten the notation, we write a+, b+, c+ as a, b, c.

Remark 5.4. By choosing c− ≤ c ≤ c+, the proof of Lemma 5.3 shows that
z−ext < e−λτ cZ(u) < z+ext in {R2e

−λτ/2 < u <∞} for all τ ≥ τ4.

Lemma 5.5. Let τ3 be from Lemma 5.1 and τ4 from Lemma 5.3. Let
RD := D

√
b/c where D > 0 is arbitrary. Suppose A and c satisfy the

following inequality(
1 +

3

8
D−2

)
c < A−2 <

(
1 +

1

2
D−2

)
c.(5.1)

Then there exists τ5 ≥ max{τ3, τ4} sufficiently large such that(
z+int − z

+
ext

)
(RD, τ) < 0,

(
z+int − z

+
ext

)
(2RD, τ) > 0

for all τ ≥ τ5.
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Proof. At the interface of interior and exterior regions, we have the following
for τ ≥ τ5. In the interior region, we have as r ↗∞ that

z+int = B(r, τ) + e−λτβ(r, τ)

=
(
A−2r−2 + c2A

−4r−4 +O
(
r−6
)) (

1 +O
(
ae−λτ/2

))
+O

(
e−λτ

)
.

In the exterior region, we have as u = re−λτ/2 ↘ 0 that

z+ext = e−λτ
(
cu−2 +O(1)

)
+ e−2λτ

(
bu−4 +O

(
u−2

))
= cr−2 + br−4 +O

(
e−λτr−2

)
So on bounded r-interval, we have

r2
(
z+int − z

+
ext

)
=
(
A−2 − c

)
+
(
c2A

−4 − b+O
(
r−2
))
r−2 +O

(
e−λτ/2

)
.

Let us choose a constant Ĉ so large that for

b ≥ ĈA−4 and b ≥ Ĉ
√
c,

we have ∣∣∣∣ c2cbA4
+O

(
c2

b2

)∣∣∣∣ ≤ c

2
.

Then at r = RD,

R2
D

(
z+int − z

+
ext

)
= (A−2 − c) +

[
c2c

bA4
+O

(
c2

b2

)
− c
]
D−2 +O(τe−λτ )

≤ A−2 −
(

1 +
1

2
D−2

)
c+O

(
e−λτ/2

)
,

and at r = 2RD,

4R2
D

(
z+int − z

+
ext

)
= (A−2 − c) +

[
c2c

bA4
+O

(
c2

b2

)
− c
]
D−2

4
+O(τe−λτ )

≥ A−2 −
(

1 +
3

8
D−2

)
c+O

(
e−λτ/2

)
.

Now choose A and c according to (5.1), then the lemma follows for τ ≥
τ5. �

For fixed λ 6= 1 and constants A, b±, c± chosen so far, we define the upper
barrier z+ for equation (3.1) by

z+ :=


z+int, if 0 < u ≤ RDe−λτ/2,

min
{
z+int, z

+
ext

}
, if RDe

−λτ/2 ≤ u ≤ 2RDe
−λτ/2,

z+ext, if 2e−λτ/2RD ≤ u <∞.

(5.2)

The lower barrier z− = z−(u, τ) for equation (3.1) is defined analogously

using z−int and z−ext; in particular, z− := max{z−int, z
−
ext} for RDe

−λτ/2 ≤ u ≤
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2RDe
−λτ/2. By remarks 5.2 and 5.4, we see that z+ stays strictly above the

formal solution and z− strictly below the formal solution.
Lemmata 5.1–5.5 together with Remarks 4.2 and 4.4 imply the following

proposition.

Proposition 5.6. There exist a sufficiently large τ0 <∞ and positive con-
tinuous, piecewise smooth functions z± = z±(u, τ) defined for 0 < u < ∞
and τ ≥ τ0 such that the following hold.

(B1) z± are upper (+) and lower (−) barriers to equation (3.1), respec-
tively.

(B2) z− < z+; near u = 0, z± = z±int; as u↗∞, z± = z±ext.
(B3) At any τ ∈ [τ0,∞), we have

lim
u↘0

z− = lim
u↘0

z+ = 1, lim
u↗∞

z− = lim
u↗∞

z+ = 0.

Remark 5.7. By construction, where z+ (or z−) is not smooth, the corner
is concave (or convex).

We end this section with a comparison principle for the equation (3.1).

Proposition 5.8. Let τ̄ ∈ [τ0,∞) be arbitrary. Let z± be two non-negative
sub-(−) and super- (+) solutions of equation (3.1) respectively. Moreover,
assume

(C1) z− (u, τ0) < z+ (u, τ0) for 0 < u <∞;
(C2) z− (0, τ) ≤ z+ (0, τ), and lim

u↗∞
(z− (u, τ)− z+ (u, τ)) ≤ 0 for all τ ∈

[τ0, τ̄ ].

Then z− (u, τ) ≤ z+ (u, τ) in [0,∞)× [τ0, τ̄ ].

Remark 5.9. In this proposition, we assume z± are smooth. The result also
holds for the continuous, piecewise smooth barriers z± constructed earlier,
see Remark 5.7. When applying the comparison principle, we will only
evaluate z± at “points of first contact with a given smooth function” which
are necessarily smooth points of z± for each τ ≥ τ0.
Proof of Proposition 5.8. By (C1) and (C2), for any given ε > 0, there exists
R = R(ε) such that z+ > z− on [R,∞)× [τ0, τ̄ ] and (z+ − z−) (R) > ε.

Define

w := e−µτ
(
z+ − z−

)
+ ε,

where µ > 0 is to be chosen. Then w > 0 on the parabolic boundary
of the evolution by assumptions (C1) and (C2). We claim that w > 0 in
(R,∞)× [τ0, τ̄ ]. Suppose the contrary, then there must be an interior point
u∗ and a first time τ∗ such that w(u∗, τ∗) = 0 and wτ (u∗, τ∗) ≤ 0. Moreover,
at (u∗, τ∗), we have

z+ = z− − εe−µτ , z+u = z−u , z+uu ≥ z−uu.
Then at (u∗, τ∗),

0 ≥ eµτ∗ ∂|τ wτ
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=
(
z+τ − z−τ

)
− µ

(
z+ − z−

)
≥
(
z+ − z−

) (
u−2 − µ

)
+

Qu[z+]− Qu[z−]

2(n− 1)

=
(
z− − z+

){
µ+

(z+u /u)− z+uu
2(n− 1)

+
z+ + z− − 1

u2

}
+ z−

(
z+uu − z−uu

)
≥ εe−µτ∗

{
µ− Qu[z+]− Qu[z−]

2(n− 1)

∣∣∣∣
(u∗,τ∗)

− 1

u2∗

}
= εe−µτ∗ {µ− (bounded term independent of µ)}

Since ε > 0 is fixed, we choose µ sufficiently large, then at (u∗, τ∗) we have

0 ≥ ∂|τ w > 0,

which is a contradiction. Hence, the claim is true. In the proof of the claim,
µ may depend on ζ+, ζ− and τ̄ , but not on ε > 0. Therefore, letting ε→ 0,
the proposition follows. �

6. Proof of Theorem 1.1

For any solution z of equation (3.1) we have the following.

Lemma 6.1. Suppose 0 < z ≤ z+. If λ > 0, then z determines a complete
rotationally symmetric metric g := z−1dψ2 + ψ2gsph on Rn+1.

Proof. By definition g is rotationally symmetric. To see that g is a complete
metric, it suffices to show that any radial geodesic γ starting from the origin
has infinite length in the s-coordinate. The length of γ in s-coordinate is a
function of u and τ given by

e−τ/2√
2(n− 1)

s(u, τ) = σ(u) =

∫ u

0

dσ

dû
dû.

Since z = ψ2
s = 2 (n− 1)u2σ, and 0 < z ≤ z+ by hypothesis, we have

σ(u) ≥
∫ u

u0

1√
z
dû ≥

∫ u

u0

1√
z+
dû.

Recall that

z+ext = e−λτ cu−2
(
1 + u2

)1−λ
+ e−2λτ bu−4

(
1 + u2

)2−2λ
So for u0 and τ0 sufficiently large, z+ = z+ext in [u0, 1)× [τ0,∞) with

z+ext . e
−λτu−2λ.

It follows that

e−τ/2√
2(n− 1)

s(u, τ) &
∫ u

u0

1√
z+
dû =

∫ u

u0

1√
z+ext

dû & eλτ/2
∫ u

u0

ûλdû = u1+λ − u1+λ0 .

Therefore, for each τ ≥ τ0, lim
u↗∞

s(u, τ) =∞, whence the lemma follows. �
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Since z = ψ2
s , where s is the arclength from the origin, and we are working

with complete metrics on Rn+1, we have ψs > 0. In particular, choosing
ψ such that ψs > 0. As explained in [18, 28], the condition ψs > 0 can
be interpreted as the absence of minimal sphere in the manifold. Also,
our formal solution and barriers all satisfy lim

s↘0+
ψs = 1 and lim

s↗∞
ψs = 0.

The following lemma bounds ψs along Ricci flow. In particular, minimal
hyperspheres cannot appear along the Ricci flow solution if none existed at
the initial time.

Lemma 6.2. Suppose that the initial metric g0 satisfies 0 < ψs ≤ 1, then
0 < ψs ≤ 1 for as long as the solution to Ricci flow exists.

Proof. Denoting v = ψs, then by [1, Equation (16)] the evolution of v is

vt = vss +
n− 2

ψ
vvs +

n− 1

ψ2
(1− v2)v.

By the maximum principle, v ≤ 1; by [18, Lemma3.1], v > 0. Thus, the
lemma is proved. �

Remark 6.3. The condition ψs > 0 is interpreted as the absence of minimal
sphere in the manifold, cf. [18, 28].

We now prove the main results in this paper.

Proof of Theorem 1.1. Let n + 1 ≥ 3 and fix λ > 0. Let τ5 be given in
Lemma 5.5. We pick τ0 ≥ τ5 so that all results in Sections 4 and 5 apply.
Note that t0 = eτ0 .

Let z+(u, τ) and z−(u, τ) be given in Section 5. Then at τ = τ0, we have
0 < z−(u, τ0) < z+(u, τ0) for all u ∈ (0,∞). We define an initial data z0
between z+(u, τ0) and z−(u, τ0) as follows.

(1) On [MRDe
−λτ0/2,∞), where M ≥ 2 is a constant to be specified, we

define ẑ0(u) = cu−2(1 + u2)1−λ where c ∈ [c−, c+]. By Remark 5.4,

z− < ẑ0(u) < z+ on [MRDe
−λτ0/2,∞). Using

K = −
zψ
2ψ

= − zu
2u

e−τ

2(n− 1)
= − zr

2r

e(λ−1)τ

2(n− 1)
,

L =
1− z
ψ2

=
1− z
u2

e−τ

2(n− 1)
=

1− z
r2

e(λ−1)τ

2(n− 1)
.

we have at τ = τ0 and on (MRDe
−λτ0/2,∞),

2(n− 1)eτ0(L−K) = u−2 +O(u−4) > 0

if we choose M ≥ 2 large enough. Also recall (3.15) and (3.16), both
K and L decay to zero as u↗∞.

(2) Recall the asymptotic expansion of B(r) as r ↘ 0 from (3.10). Then
there exists R∗ > 0 such that for r ∈ [0, R∗],

B(Ar) = 1− b2A2r2 +
n

n+ 3
b22A

4r4 +O(r6).
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On [0, R∗e
−λτ0/2], we define ẑ0(u) = B(Aueλτ0/2). At τ = τ0 and on

[0, R∗e
−λτ0/2], we have z− < ẑ0 < z+ by Remark 5.2, we also have

2(n− 1)e(1−λ)τ0(L−K) =
n

n+ 3
b22A

4r2 +O(r4) > 0

if we choose R∗ to be small enough.
(3) On [R∗e

−λτ0/2,MRDe
−λτ0/2], we connect ẑ0 in (1) with ẑ0 in (2) by

a piecewise linear continuous function strictly between z− and z+.
This is possible since z− < z+ for all u ∈ (0,∞). We have L > 0
and K = 0 where ẑ0 is linear, so in this region L−K > 0 except at
finitely many points where ẑ0 has a corner.

(4) By (1)–(3), we have a continuous, piecewise smooth function ẑ0 de-
fined on [0,∞) such that at τ = τ0, z

− < ẑ0 < z+ everywhere, and
L−K > 0 for all u ∈ (0,∞) except at finitely many points. We can
then smooth out ẑ0 at to get a smooth z0 for which z− < z0 < z+

and L−K > 0 for all u ∈ (0,∞) at τ = τ0.

By Lemma 6.1, z0 determines a complete rotationally symmetric metric
g0 on Rn+1. It is straightforward to check that g0 has bounded sectional cur-
vatures everywhere, and K and L decay to zero at spatial infinity. Since the
sectional curvatures depend smoothly on the metric, there is a neighbour-
hood of g0 in the C2 topology corresponding to an open set of z’s around z0,
all of which lie between z− and z+, satisfy L−K > 0 everywhere, and de-
termine complete rotationally symmetric metrics with bounded curvatures.

There exists a unique solution g(t) to Ricci flow starting from g0 [10,29].
We choose ψs > 0 initially, so (Rn+1, g0) does not contain any minimal
sphere. By construction, the sectional curvatures of g0 decay to zero at
spatial infinity. Thus, g(t) is immortal [18, Theorem 1.2].

The profile z(u, τ) of g(t) is the unique solution of equation (3.1) for
0 < u <∞ and τ ≥ τ0, with boundary condition z(0, τ) = 1 and asymptotic
condition lim

u↗∞
z(u, τ) = 0, and initial data z(u, τ0) = z0. By the comparison

principle in Proposition 5.8, we have 0 < z−(u, τ) ≤ z(u, τ) ≤ z+(u, τ) for
all τ ≥ τ0. In particular, z(u, τ) defines a complete, rotationally symmetric,
smooth metric g(t) on Rn+1 by Lemma 6.1.

As t = eτ ↗∞, the asymptotic behaviour of the solution agrees with that
of the barriers, and hence with that of the formal solution. In particular,
the sectional curvatures of K(t) and L(t) of g(t) at the origin O are

K (t)|O = L (t)|O ∼ t
λ−1.

If we define α = ψ2(L − K), then α ≥ 0 along the Ricci flow [18, Lemma
2.3]. Moreover, we have

∂sL = ∂s

(
1− ψ2

s

ψ2

)
= −2

ψs
ψ3
α ≤ 0,
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where we used ψs > 0 by Lemma 6.2. Hence, along the flow,

|Rm|2 (·, t) = 2nK2 + n(n− 1)L2 ≤ n(n+ 1)L2 ≤ n(n+ 1) L2
∣∣
O

= |Rm|2
∣∣∣
O

(t),

which implies that sup
Rn+1

|Rm(·, t)| is attained at the origin. Now part (1) of

Theorem 1.1 is proved.
Since z− ≤ z(u, τ) ≤ z+ for any τ <∞, and the solution z(u, τ) exhibits

the asymptotic behaviour of z±. Near the origin, z(u, τ) converges uniformly
to the Bryant soliton profile function for 0 < u < RDe

−λτ . Near spatial
infinity, i.e., as u ↗ ∞, z(u, τ) ↘ 0 at a rate depending on λ as is given
in (3.14), and so the sectional curvatures K and L are asymptotically flat
according to (3.15) and (3.16), respectively. Thus, g(t) has the asymptotic
behaviour described in parts (2) and (3) of Theorem 1.1.

Therefore, Theorem 1.1 is proved. �
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